Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Osteoarthritis Cartilage ; 29(3): 372-379, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33347923

RESUMO

OBJECTIVES: To investigate the role of zinc finger protein 440 (ZNF440) in the pathophysiology of cartilage degeneration during facet joint (FJ) and knee osteoarthritis (OA). METHODS: Expression of ZNF440 in FJ and knee cartilage was determined by immunohistochemistry, quantitative (q)PCR, and Western blotting (WB). Human chondrocytes isolated from FJ and knee OA cartilage were cultured and transduced with ZNF440 or control plasmid, or transfected with ZNF440 or control small interfering RNA (siRNA), with/without interleukin (IL)-1ß. Gene and protein levels of catabolic, anabolic and apoptosis markers were determined by qPCR or WB, respectively. In silico analyses were performed to determine compounds with potential to inhibit expression of ZNF440. RESULTS: ZNF440 expression was increased in both FJ and knee OA cartilage compared to control cartilage. In vitro, overexpression of ZNF440 significantly increased expression of MMP13 and PARP p85, and decreased expression of COL2A1. Knockdown of ZNF440 with siRNA partially reversed the catabolic and cell death phenotype of human knee and FJ OA chondrocytes stimulated with IL-1ß. In silico analysis followed by validation assays identified scriptaid as a compound with potential to downregulate the expression of ZNF440. Validation experiments showed that scriptaid reduced the expression of ZNF440 in OA chondrocytes and concomitantly reduced the expression of MMP13 and PARP p85 in human knee OA chondrocytes overexpressing ZNF440. CONCLUSIONS: The expression of ZNF440 is significantly increased in human FJ and knee OA cartilage and may regulate cartilage degenerative mechanisms. Furthermore, scriptaid reduces the expression of ZNF440 and inhibits its destructive effects in OA chondrocytes.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Proteínas de Ligação a DNA/fisiologia , Articulação do Joelho , Osteoartrite do Joelho/genética , Osteoartrite da Coluna Vertebral/genética , Dedos de Zinco/genética , Articulação Zigapofisária , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Apoptose/genética , Condrócitos/efeitos dos fármacos , Colágeno Tipo II/genética , Simulação por Computador , Proteínas de Ligação a DNA/genética , Feminino , Técnicas de Silenciamento de Genes , Inibidores de Histona Desacetilases/farmacologia , Humanos , Hidroxilaminas/farmacologia , Imuno-Histoquímica , Técnicas In Vitro , Inflamação/genética , Masculino , Metaloproteinase 13 da Matriz/genética , Metabolismo/efeitos dos fármacos , Metabolismo/genética , Pessoa de Meia-Idade , Osteoartrite do Joelho/metabolismo , Osteoartrite da Coluna Vertebral/metabolismo , Quinolinas/farmacologia , Adulto Jovem , Dedos de Zinco/efeitos dos fármacos
2.
Osteoarthritis Cartilage ; 28(10): 1394-1400, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32683043

RESUMO

OBJECT: Autophagy maintains cartilage homeostasis and is compromised during osteoarthritis (OA), contributing to cartilage degeneration. We sought to determine if D-isomer TAT-Beclin-1, a potent inducer of autophagy, could attenuate post-traumatic OA in mice. METHODS: 10-week-old mice underwent destabilization of the medial meniscus (DMM) surgery to induce post-traumatic OA, or sham surgery (control), and injected intra-articularly with D-isomer TAT-Beclin-1 (0.5-2 mg/kg) or PBS 1 week post-surgery for up to 9 weeks. Mice were sacrificed at 2 or 10 weeks post-surgery. Knee joint sections were evaluated by histopathology for cartilage degeneration and synovitis, and immunostaining for key markers of autophagy (LC3B), cell proliferation (nuclear Ki67), activated fibroblasts (αSMA), and cells of hematopoietic origin (CD45). RESULTS: All D-isomer TAT-Beclin-1-treated DMM mice had no difference in the degree of cartilage degeneration compared to PBS-injected DMM mice. Surprisingly, all D-isomer TAT-Beclin-1-treated mice exhibited substantial synovial hyperplasia, with increased cellularity and ECM deposition (fibrosis-like phenotype), as compared to PBS-injected mice. Synovial effects of D-isomer TAT-Beclin-1 were dose- and injection frequency-dependent. An increased percentage of cells positive for LC3B and nuclear Ki67 were found in the synovial intima early after injection, which persisted after frequent injections. CONCLUSIONS: D-isomer TAT-Beclin-1 did not attenuate cartilage degeneration, but rather induced synovial hyperplasia associated with increased expression of key markers of autophagy and cell proliferation and a fibrosis-like phenotype, independent of markers of fibroblast activation or persistent hematopoietic-origin cell infiltration. These data suggest that, if not tissue-targeted, caution should be taken using autophagy activators due to diverse cellular responses in the joint.


Assuntos
Autofagia/efeitos dos fármacos , Proteína Beclina-1/farmacologia , Cartilagem Articular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Osteoartrite do Joelho/patologia , Membrana Sinovial/efeitos dos fármacos , Animais , Cartilagem Articular/patologia , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Produtos do Gene tat/farmacologia , Hiperplasia , Injeções Intra-Articulares , Meniscos Tibiais/cirurgia , Camundongos , Membrana Sinovial/patologia , Sinovite/patologia , Lesões do Menisco Tibial
3.
J Biomed Mater Res A ; 83(2): 521-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17503494

RESUMO

To deliver and retain viable repair cells in a surgically prepared cartilage lesion, we previously developed an adhesive in situ-gelling cell carrier by suspending cells in a solution of hydroxyethyl cellulose (HEC), which was then mixed with chitosan-glycerol phosphate to form a chitosan-GP/HEC gel. The purpose of this study was to elucidate the mechanism of gelation to maximally control gel time and viability of encapsulated cells. We analyzed the role of osmolality, pH, gelation temperature, gel shrinkage, and HEC. A chitosan-GP solution at pH 6.8 with cytocompatible osmotic pressure (419 mOsm/kg) was achieved by lowering disodium GP concentration from 370 to 135 mM. This solution was still thermogelling but only at 73 degrees C. We next discovered that glyoxal, a common additive in ether cellulose manufacturing, was responsible for chitosan gelation. Monolayer cells survived and proliferated in up to 1 mM of glyoxal, however only a very narrow range of glyoxal concentration in chitosan-GP/HEC, 0.1-0.15 mM, permitted gel formation, cell survival, and cell proliferation. Chitosan gels containing HEC required slightly less glyoxal to solidify. Chitosan-GP/HEC loaded with viable chondrocytes formed an adhesive seal with ex vivo mosaic arthroplasty defects from sheep knee joints. In mosaic arthroplasty defects of live sheep, bleeding occurred beneath part of the hydrogel carrier, and the gel was cleared after 1 month in vivo. These data indicate that chitosan-GP/HEC is suitable as an adhesive and injectable delivery vehicle for clinical orthopedic applications involving single use treatments that guide acute cartilage repair processes.


Assuntos
Materiais Biocompatíveis/metabolismo , Celulose/análogos & derivados , Quitosana/metabolismo , Glicerofosfatos/metabolismo , Glioxal/metabolismo , Animais , Cartilagem/patologia , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Celulose/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Géis , Humanos , Camundongos , Concentração Osmolar , Ovinos , Soluções , Temperatura , Fatores de Tempo
4.
Osteoarthritis Cartilage ; 15(1): 78-89, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16895758

RESUMO

OBJECTIVE: We have previously shown that microfractured ovine defects are repaired with more hyaline cartilage when the defect is treated with in situ-solidified implants of chitosan-glycerol phosphate (chitosan-GP) mixed with autologous whole blood. The objectives of this study were (1) to characterize chitosan-GP/blood clots in vitro, and (2) to develop a rabbit marrow stimulation model in order to determine the effects of the chitosan-GP/blood implant and of debridement on the formation of incipient cartilage repair tissue. METHODS: Blood clots were characterized by histology and in vitro clot retraction tests. Bilateral 3.5 x 4 mm trochlear defects debrided into the calcified layer were pierced with four microdrill holes and filled with a chitosan-GP/blood implant or allowed to bleed freely as a control. At 1 day post-surgery, initial defects were characterized by histomorphometry (n=3). After 8 weeks of repair, osteochondral repair tissues between or through the drill holes were evaluated by histology, histomorphometry, collagen type II expression, and stereology (n=16). RESULTS: Chitosan-GP solutions structurally stabilized the blood clots by inhibiting clot retraction. Treatment of drilled defects with chitosan-GP/blood clots led to the formation of a more integrated and hyaline repair tissue above a more porous and vascularized subchondral bone plate compared to drilling alone. Correlation analysis of repair tissue between the drill holes revealed that the absence of calcified cartilage and the presence of a porous subchondral bone plate were predictors of greater repair tissue integration with subchondral bone (P<0.005), and of a higher total O'Driscoll score (P<0.005 and P<0.01, respectively). CONCLUSIONS: Chitosan-GP/blood implants applied in conjunction with drilling, compared to drilling alone, elicited a more hyaline and integrated repair tissue associated with a porous subchondral bone replete with blood vessels. Concomitant regeneration of a vascularized bone plate during cartilage repair could provide progenitors, anabolic factors and nutrients that aid in the formation of hyaline cartilage.


Assuntos
Doenças das Cartilagens/tratamento farmacológico , Quitosana/farmacologia , Coagulantes/farmacologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Doenças das Cartilagens/metabolismo , Doenças das Cartilagens/patologia , Quitosana/uso terapêutico , Coagulantes/uso terapêutico , Colágeno Tipo II/metabolismo , Glicerol/farmacologia , Glicerol/uso terapêutico , Hialina/efeitos dos fármacos , Modelos Animais , Fosfatos/farmacologia , Fosfatos/uso terapêutico , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...